Design and Performance of the at TESLA Test Facility Collimation System

Holger Schlarb
DESY -MPYholgers@slac.stanford.edu

- 1. Motivations for the collimation system
- 2. Layout and Performance
- 3. Beam Loss System
- 4. Conclusion

Scheme of TTF Linac Phase I

Goals: - Test Facility for SC-modules

- Proof-of-principle for SASE-FEL in VUV

- RF photo-injector (laser, gun, booster, bc1)
- Two superconducting acceleration modules
- Magnetic chicane (BC2)

Holger Schlarb DESY

Two stage spoiler absorber collimation system

Halo'03

05/23/2003

Motivations for the collimation system

Major concern:

Radiation damage of NdFeB

permanent magnets

Critical issues to be considered:

 absorbed dose in magnets 	< 70 kGy
--	----------

- vacuum leak due to material crack < 2 6 μs
- radiological dose outside tunnel < 20-100 W
- to be design, manufactured and installed < 2a

⇒ additional active and passive protection required

Design beam parameter:

Bunch spacing
Beam current
Bunch charge
norm. emittance
Beam Energy
Beam duration
Repetition rate
Beam power

TTF	FEL	Used	
1 μ s	0.11 μs	0.44/1 μs	
8 mA	9 mA	3-7 mA	
8 nC	1 nC	2-4 nC	
20 μm	2 μ m	3-10 μm	
150 -	500 MeV	250 MeV	
800) μ s	10-800 μ s	
10	Hz	1 Hz	
10 - 36 kW		<1.4 kW	

Motivation for the collimation system

- Radiation hardness of NdFeB magnets -

Various experiments:

TTF dispersive section: 10-30 MeV electrons < 800 kGy no demag.

ESRF: 180 MeV electrons

type E: 65 kGy (>20 MeV) \Rightarrow 1 % remanent loss

Pohang (Bizen et al): 2 GeV electrons

TTF type 70 kGy (>20 MeV) \Rightarrow 1 % remanent loss but discrepance if tantalum is used

Holger Schlarb DESY

- Demagnetization strongly dependent on NdFeB type and the radiation fields
- Requires the definition of an equivalent absorbed dose
- e^{-} , γ < 20 MeV no effects
- 2 GeV → hadron release can become critical
- overlap between electron and photon beam better than $20\mu m \rightarrow 0.1\text{-}0.5\%$ field changes

Halo'03 05/23/2003

Motivation for the collimation system

- Instantaneous heating -

FEL design parameter:

 $\begin{array}{ll} \text{Bunch spacing} & \text{111 ns} \\ \text{Train duration} & \text{800 } \mu \text{s} \\ \text{Charge} & \text{1.0 nC} \\ \end{array}$

Norm. emittance 2.0 μm

Spoiler could withstand 6 μ s beam at design optics (β =2.5m): Aluminum, 90 μ m rms, 300 MeV

Cracks from front to back unlike to linear colliders

Worse case scenario: Beam sizes of 60 $\mu m\ rms$ could crack aluminum within 2.5 μs , copper 1.25 μs chamber of undulator 2.0 μs , etc.

Motivations for the collimation system - radiation outside tunnel shields -

- High energy neutrons dominates equivalent dose level outside tunnel shielding
- 230→ 460MeV onset of photopion production mechanism (resonance at 300MeV)
- Heavy concrete shields to be added to tunnel shields
- < 10 μSv/h required
- ⇒ additional heavy concrete shields surrounding the collimator required

Hadron radiation dose for 10^{15} e⁻/h (0.06% I_{nom})

energy	tunnel shield only	+ concrete blocks
230 MeV	10 μSv/h	1 μSv/h
460 MeV	100 μSv/h	10 μSv/h

=> at 230 MeV

 $I_{loss} \leq 0.6 \% \cdot I_{nom}$

Generation of beam halo in a RF-gun

- Example: FEL run 04/2000
- Bunch charge 1 nC
- Small slice emittance but large projected emittance due to beam halo
- Halo formation very sensitive to charge, magnets and rf settings.

Simulation of the beam halo

- Beam tracked from the rf-gun to the center of the collimator (FEL condition 04/00)
- In example shown 50% of the beam (core) is perfectly matched to the undulator
- In this case about 0.5% of beam cannot pass the collimators (about 80 W for nominal beam current)

- Operational experience during FEL runs with saturation:
 - losses of a few percent at the collimator section
- no CSR effects included in simulation

Dark Current from RF-gun

Dark current monitor

BPM I dark 2INJ2

(C.Magne Saclay)

150

100

- emitted dominantly from gun back plane
- can be in same order as beam current
- few percent is accelerated to the dump

Dark Current from RF-gun

[A]

Dark current monitor

BPM I dark 2INJ2

BPM I dark 2INJ2

(C.Magne Saclay)

1 miliodindindindindindind

8

Dimension / rnm

Halo'03

05/23/2003

Res= 1.Buf= 6

1000.

[s]

100

- emitted dominantly from gun back plane
- can be in same order as beam current
- few percent is accelerated to the dump

Scheme of the collimation section

- 2 spoilers to restrict the phase space acceptance
- 2 absorber to remove secondary particles
- 4 quadrupoles for optics match to undulator
- 2 bpms to center beam in the spoilers
- 1 OTR-screen to match beam into collimator
- 4 steerers to correct for quadrupole misalignments
- · toroids and photomultiplier to monitor the transmission
- · water cool and temperature controlled

Holger Schlarb DESY

Drawing of the collimator section

Drawing of the collimator section

Holger Schlarb DESY

Halo'03 05/23/2003

Holger Schlarb DESY

Halo'03 05/23/2003

Magnetic Properties of the Undulator

Dipole field at entrance, center and exit of undulator

content of high harmonics first harmonic B_0b_1 454.0 mT b_1 0.9908

third harmonic B_0b_3 4.455 mT b_3 0.0097 fifth harmonic B_0b_5 -0.248 mT b_5 -0.0005

quadrupole magnets:

quadrupole gradients

Holger Schlarb DESY

Halo'03 05/23/2003

Performance of the collimator

Phase space acceptance

Clearance of collimated beam to undulator vacuum chamber:

Performance of the collimator

Energy acceptance

- halo emittance ε = 1.41.μm
- beam energy between 150 350 MeV

=> losses are asymetrical w.r.t. ΔE/E

Holger Schlarb DESY

Gradient errors of quads

Displacements of quads

Secondary particle efficiency

z/cm

Halo'03 05/23/2003

Collimator Performance

- energy deposition in undulator -

secondary particles generated at the spoilers which escaped the absorber system

the limited energy bandwidth of the collimator

- •Gain of about 3 orders in magnitude (primary versus secondary losses)
- •Rapid drop of dose in lateral direction
- •Pattern strongly dependent on beam loss mechanism
- •Simulated dosimeter overestimate deposited dose
- •Can be used to identify operation errors of collimator section

Holger Schlarb DESY

Collimator Performance

- examples for measured dose rates -

Integrated beam current

Figure 1: Averaged charge per macro pulse.

- The smallest ration dose versus charge amounts to 5kGy/C.
- In 4 week with 80% availabilty about 57.6 C is transported
 - \Rightarrow 290 kGy is the expected absorbed dose in the undulator after the high gradient long macropulse test.

Dosimeter values

Figure 2: The first three dosimeter values are plotted agains the integrated charge. Different sources of beam losses can be identified by the ration of the dosemeter values.

Beam Loss Monitor System - Layout -

- Secondary emission or photomultiplier used
- Full integrated to beam inhibit system (BIS)
- 10 μs beam allowed (mask)
- 2.2 μs reaction time

Signal Processing:

Beam Loss Monitor System

- Loss monitor distribution -

Beam loss monitor display

Holger Schlarb DESY

Halo'03 05/23/2003

Beam Loss Monitor System - PM-calibration -

- PM with resolutions of $0.5\% \Rightarrow$ calibration using difference between up and down-stream toroids
- PM with resolutions below $0.5\% \Rightarrow$ induce small beam losses in controlled way

90% of charge hitting the wire is lost in

Holger Schlarb DESY

Halo'03 05/23/2003

Beam Loss Monitor System PM-calibration

- Interlock levels can be adjusted to resolve 10e-6 losses in the undulator region
- Limited by back ground radiation from other locations in the linac
- Fully integrated to TTF interlock
 After disassembly of undulator, no field degradation has been measure (integr. depos. dose ~ 30kGy)

-XESCA---

Conclusion

Bunch Compressor 2 (BC2)

- Nominal bending angle
- Momentum acceptance
- Horizontal dispersion
- Longitudinal dispersion
- Additional path length
- Chamber material
- Chamber height
- Effective dipole length
- Distance outer dipoles
- Distance inner dipoles

20 deg.

-14% to +20%

393 mm

227 mm

105 mm

Αl

23 mm

513 mm

487 mm

1287 mm

Bunch Compressor 2

Signal processing

- Signals of PM to fast for ADCs ⇒ gated fast integrator
- Discriminator triggers interlock ⇒ 2.2us to switch off laser

Picture RF-gun and cathode system

TESLA Test Facility Linac Phase II

Holger Schlarb DESY

Halo'03 05/23/2003

Gain Saturation at 80-120 nm

Gain process can be interrupted by 15 steering magnets:

Holger Schlarb DESY

Performance of the collimator

Phase space acceptance

Holger Schlarb DESY

Tracking of secondary particles

EM-shower in collimator and undulator are simulated

About 0.13% of the incoming beam energy escape the absorber and is dumped in the undulator

Energy deposition along the undulator

Scheme of TTF Linac Phase I

120 MeV 4 MeV 16 MeV 240 MeV laser driven booster photon beam electron gun cavity superconducting accelerating cavities undulator diagnostics e - beam bunch e - beam collimator diagnostics diagnostics compressor

Goals:

- a) Test Facility for SC-modules
- b) Proof-of-principle of SASE-FEL

TTF Linac:

- RF photo injector
- Two SC-acceleration modules
- Bunch compressor (BC2)
- Collimation system
- Three undulator modules

Scheme of TTF Linac Phase I

4 MeV 16 MeV 120 MeV 240 MeV laser driven booster photon beam electron gun cavity superconducting accelerating cavities undulator diagnostics e - beam bunch e - beam collimator diagnostics diagnostics laser compressor

Goals:

- a) Test Facility for SC modules
- b) Proof-of-principle of SASE-FEL

Linac:

- RF photo injector
- Two SC-acceleration modules
- Bunch compressor (BC2)
- Collimation system
- Three undulator modules

Undulator Modules

number of segments		3
period length	λ_u	$27.3\mathrm{mm}$
number of poles		327
undulator peak field	B_0	$0.4582{ m T}$
undulator rms field	B_{rms}	$0.3210{ m T}$
average K-value of undulator	K_{rms}	0.8184
average quadrupole gradient	g_{mean}	$10.497{ m T/m}$
length of quadrupole	l_q	$163.8\mathrm{mm}$
length of FODO-cell	λ_{FODO}	$955.5\mathrm{mm}$
undulator gap height	h	$12\mathrm{mm}$
vacuum chamber radius	R_{und}	$4.75\mathrm{mm}$

